Rubielos de la Cérida-Impaktstruktur (Spanien) : interne Schliffflächen in Impakt-Megabreccien

Bild A zeigt Teil einer ausgedehnten Megabreccie im Bereich des südlichen Zentralberges der Rubielos de la Cérida-Impaktstruktur. Innerhalb einer chaotischen Anhäufung von Kalksteinblöcken und -fragmenten hat sich lokal eine große Schlifffläche mit ausgeprägter Striemung und Spiegelpolitur gebildet. Hammerlänge 40 cm. Eine Beziehung zu irgendwelchen tektonischen Strukturen gibt es nicht. Es wird angenommen, daß diese besondere Deformation unter extrem hohem Druck bei der Entwicklung des Zentralberges (Modifikationsphase der Kraterbildung) entstand.

 

 A
 B Ähnliche interne Schliffflächen werden vielfach in den stark brecciierten Bereichen der Rubielos de la Cérida-Struktur beobachtet. Bild B zeigt eine Fläche mit Spiegelpolitur in einer völlig vergriesten Kalksteinscholle innerhalb der Megabreccie von Barrachina.

AZUARA-IMPAKTSTRUKTUR (SPANIEN) GEKRÜMMTE KLUFTSCHAREN: ANZEICHEN FÜR IMPAKT-INDUZIERTE BRUCHBILDUNG

Die Typlokalität für das bemerkenswerte Kluftmuster (Bilder A, B) fand H. Müller im Rahmen der Kartierungen zu seiner Diplomarbeit im südwestlichen Ringareal der Azuara-Impaktstruktur (UTM 684500/4555400; nahe Moneva), grob 15 km vom Zentrum entfernt. Der Aufschluß besteht aus fossilreichen, stark beanspruchten Dogger-Kalksteinen. Das zur Diskussion stehende Kluftmuster fällt sofort durch die ausgeprägte Krümmung der Klüfte auf.. Offensichtlich sind zwei konjugierte Scharen ausgebildet, die ein System mit einheitlichem Streichen bilden. Das System ist etwa symmetrisch zur Vertikalen ausgebildet und zerlegt das Gestein in annähernd rhombische Blöcke. Vielfach führt das zu einer Rhomboid-in-Rhomboid-Struktur. Geringe Versätze im Zentimeterbereich mit Striemung in Fallrichtung können beobachtet werden.
 A  B
Im Zuge weiterer Geländeaufnahmen wurden noch mehr dieser Kluftscharen mit ganz ähnlicher Ausbildung im Ringbereich der Azuara-Struktur gefunden. Anders als bei den Scharen im Bild A, sind die Krümmungen der Kluftscharen im Bild C (südlich von Belchite) entgegengesetzt konvex, und Bild D (bei Almonacid de la Cuba) zeigt das Phänomen in kleinerem Maßstab bei unregelmäßigerer Struktur.
 C  D
 

Im Bild E sind die bisher bearbeiteten Vorkommen mit den eingemessenen Streichrichtungen eingezeichnet. Obwohl statistisch nicht besonders gut belegt, erkennt man einen Trend zu radialem Streichen in Bezug auf das Zentrum der Impakt-Struktur.

Diskussion. – Im Gegensatz zu wohlbekannten rhomboiden Strukturen in Verbindung mit linearen Kluftsystemen, sind stark gekrümmte konjugierte Kluftscharen mit Rhomboid-in-Rhomboid-Gefüge in der Strukturgeologie ganz offensichtlich unbekannt. In einer Proceedings-Publikation, pp. 257-263 (Bild F), zeigen Müller und Ernstson, daß Beziehungen zu listrischen Verwerfungen sowie eine Bildung durch sedimentäre und diagenetische Prozesse ausgeschlossen werden können. In der Publikation schlagen sie das Modell einer dynamischen Bildung mit der Modulation laufender Brüche während des Impaktprozesses vor. Nach diesem Modell überlagert sich in der Exkavationphase das Bewegungsfeld der schock-initiierten Gesteinsbewegung mit dem wachsenden Impuls der Entlastungswellen. Daraus resultiert ein zeitlich veränderliches Spannungsfeld, was zur Folge hat, daß fortschreitende Brüche auf gekrümmten Bahnen geführt werden können. Einen solchen Prozeß kennt man sehr gut aus der experimentellen Bruchmechanik: Durch eine Modulation laufender Brüche mit Ultraschall-Wellen kann man wellige Bruchflächen in Glas oder anderen Materialien erzeugen.In der Veröffentlichung berechnen und zeigen wir, daß im frühen Stadium des Kraterbildungsprozesses (Exkavation) während einer kurzen Zeit und in bestimmten Bereichen sich genau die Bedingungen für die Bildung gekrümmter konjugierter Kluftscharen einstellen können.Dieses Model ist nicht nur verträglich mit den Geländebeobachtungen in der Azuara-Struktur (radiales Streichen in Bezug auf das Impaktzentrum, konvexe und konkave Krümmung, unterschiedliche Krümmungsradien, Rhomboid-in-Rhomboid-Gefüge), sondern es verlangt auch, daß Systeme mit gekrümmten Kluftscharen zum normalen strukturellen Inventar von Impakt-Kratern gehören sollten.

Azuara-Impaktstruktur (Spanien), Impaktstruktur Nördlinger Ries (Deutschland): Impakt als geologischer Prozeß

Einige Kilometer außerhalb des nördlichen Ringes der Azuara-Impaktstruktur ragen bei Belchite eine Handvoll großer isolierter Schollen jurassischer Kalksteine aus den jungtertiären Post-Impakt-Sedimenten des Ebro-Beckens hervor. In diesen Schollen sind mehrere Steinbrüche angelegt. Sie gewähren einen lehrreichen Einblick in die drastischen Deformationen, die riesige Gesteinsvolumina beim Impakt erfahren haben.
A  B
Bild A zeigt einen Ausschnitt eines großen Steinbruches (UTM-Koordinaten 0687000, 4583000), wobei die sichtbare Länge grob 300 m beträgt. Die Kalksteine sind durch und durch zertrümmert, und es hat sich eine mehr oder weniger durchhaltende Brekzie mit Vergriesung und Mörteltextur gebildet (siehe die Bilder B bis E).  C
 D  E
Vergleichbare drastische und durchhaltende Zertrümmerungen (Bilder F und G) sind in einem weiteren Steinbruch in einer anderen Scholle (UTM-Koordinaten 0683000, 4583000) aufgeschlossen.
 F  G
H und I Impaktstruktur Nördlinger Ries; Steinbruch Iggenhausen
 H  I
Anmerkungen: Das Gebiet der Azuara-Struktur und die jurassischen Kalksteine haben die alpidische Gebirgsbildung mit Faltung und Bruchtektonik erlebt, aber wir weisen ausdrücklich darauf hin, dass diese durchgehenden gewaltigen Zertrümmerungen über hunderte von Metern unmöglich mit einer alpidischen Tektonik zusammenhängen können. Der einzige Prozess, der vernünftigerweise für dieses eindrucksvolle geologische Szenario in Frage kommt, ist ein Impakt durch einen extraterrestrischen Körper. Es überrascht deshalb nicht, wenn Deformationen genau dieser Art sehr gut vom Ries-Krater (Nördlinger Ries) bekannt sind. Sie treten in riesigen allochthonen Schollen auf, die aus diesem 25 km messenden Krater ausgeworfen wurden (Bilder H, J; Steinbruch Iggenhausen).Wir schlagen vor, dass die Geologen von der Universität Zaragoza und vom Zentrum für Astrobiologie (Madrid), die den Azuara-Impakt immer noch vehement bekriegen, einmal diese eindrucksvollen Aufschlüsse besuchen. Da sie gerne Azuara mit dem Ries vergleichen (siehe ihre Publikation in MAPS, über die mehr auf der Seite „Die Kontroverse“ zu lesen ist), werden sie eine Menge Anschauungsmaterial vorfinden.Ein weiterer Punkt ist noch wichtig. Wie bereits gesagt, ist ein Impakt der einzig in Frage kommende geologische Prozess, der diese ungeheuren und voluminösen Zertrümmerungen erklären kann. Mit anderen Worten: Um Azuara als eine Impaktstruktur zu definieren, bedarf es gar nicht der in vielen polymikten Brekzien nachgewiesenen Schockeffekte (siehe dazu weiter unten in Impakt-Highlights und unter http://www.impaktstrukturen.de/spain/die-azuara-impaktstruktur/schockmetamorphose/). Die hier beschriebenen Aufschlüsse sind als gleichermaßen aussagekräftige Beweise einzustufen.

Gewöhnlich ist es so, dass eine Impaktstruktur als solche anerkannt wird, wenn man Effekte einer Stoßwellenmetamorphose nachweisen kann. Dabei wird vernünftigerweise argumentiert, dass keine endogenen Prozesse bekannt sind, bei denen sich z.B. diaplektisches Glas bildet oder sich planare Deformationsstrukturen (PDFs) in Quarz entwickeln. Ganz genauso argumentieren wir, dass keine endogenen geologischen Prozesse bekannt sind, die auf diese katastrophale Weise die jurassischen Kalksteine bei Belchite zerstört haben.

Deshalb sollten sich Geologen ihrer Kompetenz bewusst sein, in manchen Fällen aufgrund reiner Geländebefunde die Impaktnatur einer bestimmten Struktur zu beweisen. Es scheint höchste Zeit, die ziemlich beschränkte Sichtweise einiger Impaktforscher aufzugeben, nach der allein TEM-Analysen von PDF oder geochemisch nachgewiesene Spuren des Projektils den letzten Beweis für einen Impakt liefern.

Rubielos de la Cérida-Impaktstruktur (Spanien): Impakt-Schmelzglas vom Zentralberg

 A  B
Das in den Bildern A und B (Bildbreite in B 14 mm) gezeigte Glas überzieht einen Sandstein, der im Zentralberg der Rubielos de la Cérida-Impaktstruktur ansteht. Das Glas ist durchsichtig bis milchig trüb bei grünlicher bis weißlicher Farbe. Im Dünnschliff (C, D (xx Nicols) – Bildbreite 6 mm) zeigt sich der Sandstein extrem beansprucht. Man beobachtet kataklastisches Fließgefüge, das in das Glas übergeht. Die Quarzkörner sind in höchstem Maße zerbrochen; vielfach treten multiple Scharen planarer Deformationsstrukturen (PDFs) sowie planarer Brüche (PFs) auf.
 C  D
Interpretation: Trotz der beobachteten Schockeffekte hat sich das Glas wahrscheinlich nicht als Schockschmelze gebildet. Wir denken stattdessen an eine Reibungsschmelze (Pseudotachylit), die sich durch extreme dynamische Metamorphose während des Impaktprozesses (in der Exkavationsphase oder – wahrscheinlicher – in der Modifikationsphase im Zuge der Entstehung des Zentralberges) gebildet hat. Für eine Homogenisierung dieses Schmelzglases waren vermutlich mehr als 2000 °C nötig (David Griscom; pers. Mitt.).Den Ort dieses spektakulären Aufschlusses wollen wir vorerst nicht bekannt geben, um ihn nicht einer Zerstörung durch Mineralien-/Gesteinssammler auszusetzen.

Rubielos de la Cérida-Impaktstruktur, Spanien: am Kraterboden


Diese bemerkenswerte Falte ist in einem Bereich ausgedehnter Megabrekziierung in der Nähe des Dorfes Barrachina in der Rubielos de la Cérida-Impaktstruktur aufgeschlossen. Die Falte wird von einer kompetenten, allerdings extrem brekziierten Bank alttertiärer Kalksteine nachgezeichnet. Der Kern der Falte ist ein Brei nahezu pulverisierter Karbonatgesteine ohne jegliche interne Struktur. Allein einige Kalksteinfragmente haben sich erhalten.

Interpretation: Es wird angenommen, daß sich der Aufschluß am Kraterboden oder in seiner Nähe befindet

(mehr dazu unter:

Fieldguide – Stages of Crater

Fieldguide – Stop 7

rubielos,

wo im Zuge der Kraterbildung (Exkavations- und Modifikationsphase) die Bewegung gewaltiger Gesteinsmassen zur Bildung der Megabrekzie führte, die heute durch die Erosion freigelegt ist. Die Falte kann dadurch entstanden sein, daß extrem brekziiertes Material in einem hochenergetischen Prozeß nach oben gepreßt wurde. Ein tektonischer Ursprung dieser eigenartigen Falte ist kaum nachzuvollziehen. Nach Ansicht örtlicher Geologen (von der Universität Zaragoza und dem Zentrum für Astrobiologie, Madrid) hat sich die Megabrekzie als Folge einer Gipslösung durch Kollaps gebildet, was hier nicht weiter kommentiert werden soll.

Azuara-Impaktstruktur (Spanien) – Ries-Impaktstruktur (Deutschland)

Kurz nach dem Impakt … A
Der Aufschluß im Bild A (Detailansichten in B, C) ist durch die Konstruktion eines Bewässerungskanals bei der Ortschaft Blesa, etwa 14 km vom Zentrum der Azuara-Impaktstruktur entfernt, entstanden.
 B

Der Kanal durchschneidet stark zerbrochene und brecciierte Kalkstein-Megablöcke des Lias in einem scharfen und steilstehenden Kontakt mit gutgeschichteten tertiären Sanden. Nahe der Kontakte schwimmen auseinandergebrochene Kalksteinblöcke in den Sanden. Die Sande sind hauptsächlich aus Calcit- und Quarzkörnern zusammengesetzt; untergeordnet treten verwitterte Glaspartikel auf. Im Dünnschliff (D; paralleles Licht, Bildbreite 1 cm) zeigen sich die Quarzkörner meist als sehr scharfkantig, was auf Zerbrechen und kurzen Transport weist.

 C

 D

Viele Quarzkörner zeigen Schockmetamorphismus in Form multipler Scharen planarer Brüche (planar fractures, PFs) und planarer Deformationsstrukturen (planar deformation features, PDFs).

Interpretation: Der bemerkenswerte Kontakt zwischen den Sanden und den überhängenden, stark brecciierten Gesteinen dokumentiert einen plötzlich einsetzenden, kurzzeitigen Ablagerungsprozeß. Andernfalls hätten die z.T. frei überhängenden, stark brecciierten Flanken der Kalksteinblöcke einen merklichen Zeitraum nicht überlebt; und Verwerfungen können grundsätzlich ausgeschlossen werden. Wir nehmen daher an, daß der Aufschluß die allererste Phase der Sedimentation am Kraterboden unmittelbar nach dem Impakt widerspiegelt.
In mancherlei Hinsicht kann diese sandige Einheit mit der sogenannten „Gradierten Einheit“ aus der Ries-Impaktstruktur (Deutschland) verglichen werden. Man hat diese Einheit als 17 m langen Kernabschnitt in der Forschungsbohrung Nördlingen 1973 angetroffen. Sie folgt unmittelbar dem Becken-Suevit mit aquatisch abgelagerten Sedimenten im Hangenden, und man betrachtet sie als das Ergebnis eines einphasigen Sedimentationsprozesses. Als Entstehung kommen ein Rückfall aus ausgeworfenem Material, aber auch Suspensionsströme in Wasser oder Dampf in Frage. Beide Deutungen stellen mögliche Erklärungen für den Ursprung der sandigen Einheit im Bewässerungskanal von Blesa dar, die gegenwärtig genauer untersucht wird.

Ries-Impaktstruktur (Deutschland); Azuara und Rubielos de la Cérida-Impaktstrukturen (Spanien)

 

B (Detailansicht)

Eigentümliche Gesteinslagerung in autochthonen Malm-Kalksteinen am östlichen Kraterrand der Ries-Impaktstruktur (Steinbruch Wemding; früher: Schneider). Die Fotos zeigen den Steinbruch im Juli 2001.

Interpretation: Der merkwürdige, abrupte Wechsel von der Horizontalschichtung zu den steilaufgerichteten und extrem deformierten Kalksteinbänken ist die Folge eines gewaltigen horizontalen Schubs bei gleichzeitiger enormer Auflast. Dieser Prozeß ist im Zuge der Exkavation durch die Überschiebung der mächtigen Auswurfmassen zu verstehen.

Ähnlich eigentümliche Deformationen können an den Kraterrändern der Azuara und Rubielos de la Cérida-Impaktstrukturen in Spanien beobachtet werden.

 

C
Aguilón; Jura-Kalksteine (Azuara-Struktur). Die durchgehende Bankung an der Basis spricht gegen eine Verwerfung.

 

D

bei Santa Eulalia; aufgelassener Steinbruch in Muschelkalk-Kalksteinen (Rubielos de la Cérida-Struktur). Bemerkenswert der in dem extrem brekziierten Material schwimmende unversehrte Block geschichteter Kalksteine!

Eine tektonische Deutung der Gesteinslagerung bereitet in allen drei Fällen erhebliche Schwierigkeiten!

Rubielos de la Cérida-Impaktstruktur (Spanien)

B

Megabrecciierung jurassischer Kalksteine im südlichen Bereich des Zentralberges bei Bueña. Man beobachtet eine chaotische Schichtlagerung, in der die Bänke kreuz und quer liegen (A), und im zweiten Bild (B) sieht man, daß nur eine rudimentäre, „geisterhafte“ Bankung die enorme Brecciierung überlebt hat.

Interpretation: Eine intensive Megabrecciierung ist ein typisches strukturelles Merkmal im Zentralberg komplexer Impaktstrukturen und von vielen Kratern bekannt. Die gewaltige Kompression geschieht in der Modifikationsphase der Kraterbildung, wenn durch den Kollaps des transienten Kraters riesige Gesteinsvolumina in Richtung auf das Zentrum der Struktur beschleunigt werden.

In der Rubielos de la Cérida-Impaktstruktur dokumentieren sich diese enormen kompressiven Kräfte mit Deformationen bis hin zu einer kontinuierlichen Megabrecciierung nahezu überall, und sie können besonders gut entlang der Straßeneinschnitte beobachtet und verfolgt

Azuara-Impaktstruktur (Spanien): Schockeffekte

 

Hochgeschockte polymikte Gangbrekzie (Vorkommen nahe Santa Cruz de Nogueras, 30660971E, 4553223N). Typische schockmetamorphe Effekte in dieser Brekzie:

 

 

 

 

 

 

 

A. Schmelzglas mit Bläschen, Schlieren und Mineralfragmenten; Dünnschliffaufnahme, paralleles Licht und gekreuzte Polarisatoren; Bildbreite 9 mm.

B. Diaplektisches Glas. Dünnschliffaufnahme einer Sandsteinkomponente, in der die Quarzkörner vollständig in diaplektisches Glas umgewandelt sind; paralleles Licht und xx Nicols, Bildbreite 600 µm. – Der Schliff enthält einige Löcher, die nicht mit diaplektischen Quarzkörnern verwechselt werden dürfen.

C. Planare Deformationsstrukturen (PDF) in Quarzkörnern eines Sandsteinfragmentes aus der geschockten Brekzie. Dünnschliffaufnahme, paralleles Licht; Bildbreite 800 µm. Man beachte die große Anzahl der Körner mit PDF, deren große Dichte, den geringen Abstand sowie die multiplen Scharen. In dieser Brekzie wurden bis zu 5 Scharen von PDF in einem einzigen Quarzkorn beobachtet.

D. Planare Brüche (Spaltbarkeit) in Quarz. Dünnschliffaufnahme, xx Nicols; Bildbreite 450 µm. Wenigstens 6 Scharen unterschiedlicher kristallographischer Orientierung treten auf. – Eine Spaltbarkeit ist praktisch unbekannt in tektonisch deformierten Quarzen. In seltenen Fällen beobachtet man Brüche nach dem Rhomboeder in Gesteinen, die einer starken Regionalmetamorphose ausgesetzt waren. In Gesteinen aus Impaktstrukturen gehört die Spaltbarkeit im Quarz dagegen zum regelmäßigen Inventar der Schockmetamorphose.

E. Knickbänder in Biotit aus der geschockten polymikten Brekzie. Dünnschliffaufnahme, xx Nicols; Bildbreite 840 µm. – Knickbänder in Glimmern sind auch aus Gesteinen einer starken Regionalmetamorphose bekannt. Die hier zu beobachtende extreme Häufigkeit, die geringe Breite der Bänder sowie die starke Knickwinkel-Unsymmetrie sprechen jedoch für eine Schockdeformation.

Die hier gezeigten schockmetamorphen Effekte spiegeln einen sehr breiten Bereich der Schockdrücke wider. Das Schmelzglas (A) belegt jedoch, daß Teile der Brekzie Spitzendrücken über 500 kbar (50 GPa) ausgesetzt waren.

Rubielos de la Cérida-Impaktstruktur, Spanien:

 

Teil eines riesigen, grob 300 m großen Steinbruchs in unglaublich stark zerstörten Muschelkalk-Kalksteinen (A). Innerhalb der vollständig brecciierten Gesteine mit Gries-Brecciierung und Mörteltextur erkennt man bis zu kubikmeter-große weiße Blöcke aus karbonatischem Material (B). Unter dem Mikroskop zeigt dieses hochporöse Material sehr geringer Dichte ein ausgeprägtes blasiges Gefüge (C; Bildbreite 7 mm).Deutung: Nimmt man für die massiven und dichten Kalksteine eine Druckfestigkeit von vielleicht 150 – 200 MPa (= 1.5 – 2 kbar) an, so müssen wir für die Deformationen Drücke annehmen, die über diesen Werten liegen – und zwar nicht nur lokal sondern durchgehend in dem riesigen Gesteinsvolumen. Dafür scheiden tektonische Vorgänge absolut aus. Bei der Enstehung von großen Impaktstrukturen sind im Verlauf der Exkavations- und/oder Modifikationsphase solche großvolumigen drastischen Deformationen dagegen zu erwarten. Die eingeschalteten Blöcke aus weißem blasigem Material deuten wir als Relikte einer Karbonatschmelze bzw. als Rekombinationsprodukte einer Dekarbonatisierung. Für die dafür notwendigen sehr hohen Temperaturen kommen Schockwellen aber auch extreme Reibungen in den Gesteinen in Frage.