Secondary cratering on Earth: The Wyoming impact crater field: Eine Fiktion – Kommentar-Artikel

Secondary cratering on Earth: The Wyoming impact crater field: More than three question marks. – Comment on the Kenkmann et al. article (GSA Bulletin).

von Kord Ernstson, Hans-Peter Matheisl, Jens Poßekel and Michael A. Rappenglück

Der jüngst (Februar 2022) von Kenkmann et al. (Thomas Kenkmann, Louis Müller, Allan Fraser, Doug Cook, Kent Sundell, Auriol S.P. Rae) im GSA Bulletin veröffentliche Artikel über das angeblich erste auf der Erde nachgewiesene Impakt-Sekundärkrater-Streufeld hat zu einer Fülle merklicher Reaktionen vor allem im Internet geführt. Impakt-Sekundärkrater findet man auf dem Mond, Planeten und ihren Monden als wohlbekanntes Phänomen, das vielfach von Impaktforschern untersucht worden ist. Bei größeren Einschlägen führt die Exkavation und die Ejektion größerer Gesteinsbrocken bei ihrer Landung zur Entstehung kleinerer Einschlagkrater in einem Umkreis um den primären Einschlag. Nach den Untersuchungen von Kenkmann et al. soll so etwas im US-Bundestaat Wyoming passiert sein, wovon heute ein etwa 90 km langer Streifen von 31 mit Schockeffekten nachgewiesenen kleineren Kratern (Durchmesser 10 – 70 m) in drei Clustern Zeugnis ablegen sollen.

In einem ausführlicheren Kommentar-Artikel, der über einen LINK und auch HIER direkt angeklickt werden kann, wird dargelegt, dass das Kraterstreufeld als Sekundärfeld eines großen primären Impaktes eine reine Fiktion ist, und die Autoren wohl eher von dem Wunsch nach wissenschaftlichen Meriten als von seriöser Forschung geleitet wurden.

Die drei Hauptargumente der Autoren und die jeweilige Zurückweisung im Kommentarartikel:

1 Eine auslösende große Impaktstruktur ist zwar bis heute nicht eindeutig nachgewiesen, kann aber nach Karten der gravimetrischen Freiluft-Anomalien als große negative Anomalie vermutet werden.

Dagegen: Die Freiluft-Anomalie ist völlig fehl am Platz. Die stattdessen richtige Bouguer-Anomalie, die leicht im Internet herunterzuladen ist, zeigt nirgendwo eine auch nur annähernd „verdächtige“ Anomalie, die einen großen Impakt signalisieren könnte.

2 Aus der Längung von elliptisch bis eiförmig erkannten Kratern werden Krater-Exzentrizitäten und Streichrichtungen der Längsachsen abgeleiten, die vier Korridore der Flugbahn der Krater-Projektile aufspannen und sich etwa in einem Areal bei der (untauglichen) Freiluftanomalie schneiden sollen.

Dagegen: Die Krater-Vermessungen sind nicht nur statistich sondern auch vom Ansatz her völlig untauglich. Von den 31 vermessenen Kratern sind 15 kreisrund (Exzentrizität e = 1) und immerhin 19 von den 31 haben ein e ≤ 1,2. Runde und gelängte Krater mischen sich in den Clustern. Solche Mischungen sind bei multiplen Projektilen eines primären Einschlags viel eher vorstellbar als bei Sekundärkratern. Im gesamten Kenkmann et al.-Artikel gibt es nicht eine einzige Abbildung mit der genauen Topographie auch nur eines einzigen Kraters mit Höhenlinien und/oder Profilschnitten. Es ist unmöglich, die Vermessungsergebnisse nachzuvollziehen. Stattdessen werden im Artikel und in den Supplemental Materials nur Luftbilder von den durch Vegetation verwaschenen Kratern gezeigt. Das Aufspannen von Ejekta-Korridoren mit teilweise nur ein oder zwei Achsen-Werten ist reine Augenwischerei.

3 Das dritte Argument von Kenkmann et al.: Ein 90 km langes Krater-Streufeld mit einzelnen getrennten Clustern kann nicht von einem primären Impakt erzeugt werden. Das zeigen etwa 20 Jahre alte Modellrechnungen und der Vergleich mit den bekannten kleinen, auf kleine Flächen beschränkten Streufeldern wie z.B. Morasko und Sikhote Alin.

Dagegen: Hier stellt sich die Frage nach wissenschaftlicher Manipulation. In der Literatur gibt es umfangreiche Literatur über die größeren bis großen Impakt-Streufelder von Campo del Cielo, Bajada del Diablo und Chiemgau-Impakt. Sie werden mit nicht einem einzigen Wort bei Kenkmann et al. erwähnt.

Dem hilft der Kommentar-Artikel ab. Hier werden den Befunden von Wyoming die bis heute in einer großen Zahl von Veröffentlichungen vorgelegten Erkenntnisse zu den Strukturen der Krater und den mineralisch-petrographischen Belegen einander gegenübergestellt und gezeigt, dass Wyoming und Chiemgau-Streufelder in ihren Befunden weitgehend korrespondieren mit der Überzeugung, dass von der wissenschaftlich Bedeutung her und mit der Fülle der publizierten Daten das Impakt-Streufeld des Chiemgau-Ereignisses das Wyoming-Streufeld keinen Grund gibt, dass momentan so viel Wind darum gemacht wird. Einen primären Impakt-Krater und ein Sekundärkrater-Impaktfeld in Wyoming gibt es nicht.

Bei soviel „Aufregung“ um das „terrestrisch erste Sekundärkrater-Streufeld“ wird vor allem vergessen, dass es das erste gigantische terrestrische Sekundärkrater-Streufeld längst gibt: die riesige Ansammlung der in Richtung des Einschlags elliptisch geformten Carolina Bays, das von Geologen und einigen Impaktforschern immer noch mit fast ausschließlich absurden Deutungen abgelehnt wird. Im Kenkmann et al.-Artikel hätte man unbedingt einen Hinweis auf das Carolina Bays-Streufeld erwartet, auch wenn es noch umstritten erscheint. Aber dann hätte natürlich für das Wyoming-Streufeld nicht so das Attribut des „ersten terrestrischen Feldes“ herausgestellt werden können.

Ein Review-Artikel zum jüngst erschienenen hervorragenden umfangreichen Buch über die Carolina Bays kann hier angeklickt werden.

Wyoming: Krater SM 3, 4, 5. Google Earth.

Chiemgau-Impakt. Krater Unterroidham. Digitales Geländemodell DGM 1, Höhenlinien.

Ergänzung

Dass es möglicherweise auch beim Nördlinger Ries-Impakt Sekundär-Impaktkrater gegeben hat, die beim Einschlag von den kleineren Komponenten der Bunten-Brekzie-Auswurfmassen zugedeckt wurden, haben jüngere Messungen der Gravimetrie ergeben:

Ernstson, K.: (2020): A GRAVITY ANOMALY IN THE RIES IMPACT CRATER EJECTA BLANKET: SECONDARY OR PRIMARY CRATERING?. – 51st Lunar and Planetary Science Conference, 1227.pdf.

Polierte Quarzit-Gerölle in Trias-(Buntsandstein-)Konglomeraten, N-Spanien: Oberflächenhärtung durch Impakt-Schock?

Kord Ernstson & Ferran Claudin (2012)

Ernstson et al. (1999, 2001a) beschreiben geschockte Quarzit-Gerölle (vorwiegend leicht metamorpher Armorikanischer Quarzit), die weit verbreitete Konglomerate der Trias (Buntsandstein-Formation) in N-Spanien aufbauen und die mit dem mitteltertiären multiplen großen Azuara-Impakt-Ereignis zusammenhängen, in dem die Azuara-Impaktstruktur und das Rubielos de la Cérida-Impaktbecken entstanden (Hradil et al. 2001, Ernstson et al. 2001 b, 2002, Schüssler et al. 2002, Claudin & Ernstson 2003, Ernstson et al. 2003). Die Quarzitgerölle sind außergewöhnlich pockennarbig und mit Kratern versehen (Abb. 1, 2) und zeigen im allgemeinen engständige subparallele Brüche (Abb. 3). Diese besonderen Merkmale treten dann ganz besonders hervor, wenn die Gerölle verstreut im Gelände als Folge der Konglomerat-Zersetzung auftreten (Abb.4).

Abb. 1. Typische Quarzitgerölle mit Pockennarben, Kratern und Politur (das besonders große Geröll) aus den geschockten Buntsandstein-Konglomeraten. „Polierte Quarzit-Gerölle in Trias-(Buntsandstein-)Konglomeraten, N-Spanien: Oberflächenhärtung durch Impakt-Schock?“ weiterlesen

Erdbeben und Meteoritenkrater: Liquefaktions-Phänomene beim Chiemgau-Impakt

Erdbeben und Meteoritenkrater: Liquefaktions-Phänomene beim Chiemgau-Impakt

Der Impakt kosmischer Körper mit der Schaffung großer Einschlagkrater ist mit der Ausbreitung seismischer Wellen verknüpft, die Energien vergleichbar allerstärkster Erdbeben und darüber hinaus freisetzen können. Es leuchtet ein, dass ähnliche Prozesse und bekannte drastische Verformungen in der Erde und an der Erdoberfläche resultieren.

Einer interessanten Frage ist in diesem Zusammenhang W. Alvarez mit Koautoren (Alvarez W., Staley E., O’Connor D., Chan M.A., Synsedimentary deformation in the Jurassic of south-eastern Utah, a case of impact shaking? Geology, 1998, 26, 579-582) nachgegangen, als er charakteristische Deformationen in aufgeschlossenen älteren geologischen Schichten mit einem möglichen Impakt in einer früheren geologischen Epoche in Verbindung brachte. Es handelt sich um die Upheaval Dome-Impaktstruktur (Utah, USA), die nach Vorstellung der Autoren zu Liquefaktions-Phänomenen geführt haben soll. Gesteins-Liquefaktion (Gesteinsverflüssigung) ist ein bekanntes Phänomen bei sehr starken Erdbeben und kann in wassergesättigten Lockersedimenten durch den Bebenschock zu enormen Veränderungen der Erdoberfläche mit katastrophalen Gebäudeschäden führen. Für das Studium früherer Erdbeben in der geologischen Vergangenheit (Paläoseismizität) sind Beobachtungen in älteren geologischen Schichten bedeutsam, und Alvarez hatte nun darauf hingewiesen, dass fossile Liquefaktionsmerkmale in den Gesteinen nicht notwendigerweise von Erdbeben herrühren müssten, sondern auch mit früheren großen Impakten zusammenhängen könnten. Kritische Stimmen hatten dazu dann angemerkt, dass in dem speziellen Fall der relativ kleinen Upheaval Dome-Impaktstruktur ( 6 km Durchmesser) und dem geologischen Aufschluss in immerhin 260 km Entfernung ein solcher Zusammenhang wohl sehr fraglich sei.

Zum ersten Mal ist nun ein zwingender direkter Bezug zwischen einem großen meteoritischen Impakt und markanten Liquefaktions-Strukturen aufgezeigt worden, worüber nunmehr ein Artikel erschienen ist:

Ernstson, K., Mayer W., Neumair, A., and Sudhaus, D. (2011): The sinkhole enigma in the alpine foreland, Southeast Germany: Evidence of impact-induced rock liquefaction processes. – Cent. Eur. J. Geosci., 3(4), 385-397.  DOI: 10.2478/s13533-011-0038-y

typische Donnerlöcher als Folge der Impakt-Bodenverflüssigung, frisch eingebrochen und etwas älter, im Gebiet von Kienberg

Abb. 1. Ein aktueller und ein etwas älterer Donnerloch-Einbruch bei Kienberg nördlich des Chiemsees. Von herkömmlichen und wohlbekannten Erdfällen z.B. in Karstgebieten unterscheiden sich die Donnerlöcher dadurch eklatant, dass dem Einbruch zuvor eine energiereiche Bewegung von Gesteinsmassen von unten nach oben voranging, wie es typisch für Liquefaktionsvorgänge ist.

Der Artikel beschreibt die ersten geologischen und geophysikalischen Untersuchungen zum Phänomen der sogenannten “Donnerlöcher” im Raum Kienberg nördlich vom Chiemsee in Südost-Bayern. Die Autoren kommen zum Schluss, dass die seit Menschengedenken rätselhaften und auch von Geologen bisher nicht erklärbaren unzähligen plötzlichen Geländeeinbrüche auf späte und auch noch heute wirksame Prozesse einer früheren schockartigen Bodenverflüssigung (Liquefaktion) im Untergrund zurückzuführen sind, wie sie eben von sehr starken Erdbeben bekannt ist. Die geologisch so markanten Strukturen im Untergrund, wie sie diese neuen Untersuchungen aufgedeckt haben und wie sie in sehr ähnlicher Form von der katastrophalen Erdbebenserie von New Madrid (Missouri, USA) 1811/1812 bekannt sind, werden als Folge des Impaktschocks im Zuge der Entstehung des Chiemgauer Meteoritenkrater-Streufeldes (Chiemgau-Impakt) verstanden. Damit wird einmal mehr deutlich, dass im Zuge der Forschungen zum Chiemgau-Impakt das jüngste Quartär (Holozän) im Verbreitungsgebiet des Kraterstreufeldes mancherlei Revisionen bedarf.

Detaillierter mit den geophysikalischen Messungen (Widerstandsmessungen und Induzierte Polarisation) bei der Untersuchung des Donnerloch-Phänomens befasst sich ein Beitrag auf der Herbsttagung der American Geopysical Union (AGU) in San Francisco 2011:

Kord Ernstson & Andreas Neumair: Geoelectric Complex Resistivity Measurements of Soil Liquefaction Features in Quaternary Sediments of the Alpine Foreland, Germany. – AGU 2011 Fall Meeting, NS23A-1555.

Abstract und Poster können angeklickt werden.

Pseudosektion induzierte Polarisation Profil electrical imaging über aktiver Absenkung, Impakt-Bodenverflüssigung

Abb. 2. Aus der geophysikalischen Untersuchung der durch den Chiemgau-Impakt initiierten Donnerlöcher. Die geoelektrische Messung der Induzierten Polarisation auf einem Profil über eine akute Bodensenkung als Vorbote eines zukünftigen Donnerlochs zeigt in aller Deutlichkeit die Intrusionsbahnen von unten nach oben als Ausdruck der Impakt-Liquefaktion.

Etwas mehr dazu mit Bildern von den Geländearbeiten und den Aufschlüssen kann HIER angeklickt werden.

Akkretionäre Lapilli aus den Impaktstrukturen Azuara und Rubielos de la Cérida (Spanien)

„Akkretionäre Lapilli“ ist ein Begriff, der ursprünglich allein mit Vulkanismus in Verbindung gebracht wurde. Akkretionäre Lapilli sind Kügelchen, die sich durch Zusammenballung von feiner Asche um kondensierende Wassertröpfchen, aber auch um feste Partikel bilden, insbesondere in dampfreichen Eruptionssäulen. Gewöhnlich zeigen sie einen konzentrischen internen Aufbau, und sie können, wenn sie sich einmal gebildet haben, durch pyroklastischen Rückfall und Fließprozesse transportiert und abgelagert werden. Akkretionäre Lapilli mit einem kleinen Gesteinsbrocken als Kern findet man häufig in basaltischen base-surge-Ablagerungen (armoured lapilli).


Bild 1: Akkretionärer Lapillo (Durchmesser 0,5 mm) aus der basalen
Suevitbreccie in der Azuara-Impaktstruktur (Mayer 1990). Dünnschliffaufnahme,
xx Nicols.

Da ähnliche Prozesse in der turbulenten Explosionswolke ablaufen, die sich beim Impakt „Akkretionäre Lapilli aus den Impaktstrukturen Azuara und Rubielos de la Cérida (Spanien)“ weiterlesen

Regmaglypten auf Klasten von den Puerto Mínguez-Ejekta (multipler Impakt von Azuara, Spanien)

Abb.1. Verblüffend ähnlich: Regmaglypten auf dem Tabor-Meteoriten und auf einer Kalkstein-Komponente aus den Puerto Mínguez-Impaktejekta.

Unter den verschiedenen Deformationsmerkmalen, die die Kalksteinklasten in den Puerto Mínguez-Impaktejekta aufweisen (Striemungen, Eindrückmarken, Rinnen, rotierte Brüche, unregelmäßige Brüche mit komplexen Verzweigungen, Spiegelpolitur usw.) sind Regmaglypten auf den Oberflächen einer großen Anzahl von Klasten eines besonders auffälliges Merkmal (Abb. 1). Sie wurden zum ersten Mal von K. Ernstson (2004) beschrieben, und sie demonstrieren einen Lufttransport einer großen Menge von Komponenten der Ejekta.

Source: Cascadia Meteorite Laboratory, Portland State University

Abb. 2. Ein Meteorit vom Gibeon-Streufeld mit ausgeprägten Regmaglypten.

Regmaglypten (oder Daumenabdrücke) sind ein Relief, das gewöhnlich für die Oberfläche „Regmaglypten auf Klasten von den Puerto Mínguez-Ejekta (multipler Impakt von Azuara, Spanien)“ weiterlesen

Schnitt durch einen Impakt-Kraterrand: Signatur von Exkavation und Modifikation im Kraterbildungsprozeß.

Straßenbauer sind gute Freunde der Impaktgeologen. Ohne ihre Arbeit würden die eindrucksvollen Impakt-Aufschlüsse in den spanischen

Impaktstrukturen von Azuara und Rubielos de la Cérida nicht existieren, und viele der impakt-typischen Gesteine wären nicht entdeckt worden. Innerhalb der letzten Dekade wurden Kilometer über Kilometer neuer geologischer Aufschlüsse geschaffen, und wir erwähnen nur die Straßenanschnitte zwischen Luco de Jiloca und Lechago, am Puerto Mínguez, zwischen Navarrete und Barrachina, zwischen Fuendetodos und Azuara, zwischen Lécera and Muniesa, zwischen Fuendetodos und Jaulín, und viele mehr. Nicht nur die Straßenanschnitte sondern auch die vielen neuen Steinbrüche, die für Straßenbaumaterial aufgemacht wurden, haben neue Aufschlüsse von großer geologischer Bedeutung geschaffen, wie zum Beispiel die Steinbrüche zwischen Belchite und Puebla de Albortón, die vielen temporären Steinbrüche zwischen Navarrete und Barrachina, die großen Steinbrüche von Corbalán, San Blas, Villafranca del Campo, in der Umgebung von Muel, usw.

Lageplan



Die neue Straße über den Kraterrand und ein Blick hinunter in das Rubielos de la Cérida-Impaktbecken.

Erst kürzlich hat der Bau der neuen Straße, die in den südöstlichen Rand des Rubielos de la Cérida-Impaktbeckens im Anstieg zwischen Alfambra/Escorihuela und El Pobo/Cedrillas schneidet, einen atemberaubenden ununterbrochenen geologischen Aufschluß von gegenwärtig 2 km Länge geschaffen. Der Aufschluß vermittelt nicht nur die „Schnitt durch einen Impakt-Kraterrand: Signatur von Exkavation und Modifikation im Kraterbildungsprozeß.“ weiterlesen

Der Impaktit von Jaulín (Azuara, Spanien)

Ungefähr 30 km nördlich vom Zentrum der Azuara-Impaktstruktur (Spanien) nahe der Ortschaft Jaulín (0°59.3′ W; 41°27.2′ N) ist eine eigentümliche Breccie aufgeschlossen. Die bisher geologisch nicht kartierte Breccie ist zwischen fossilreichen jurassischen Kalksteinen und bräunlichen miozänen(?) Gipsmergeln eingeschaltet. Sie liegt diskordant über den mesozoischen Gesteinen (Abb. 1), kann diese durchschlagen (in Form von Gängen, Abb. 2) und korrosiv erodieren (Abb. 3).


Abb. 1. Diskordanter Kontakt zwischen der Jaulín-Breccie und den jurassischen Kalksteinen.

Abb. 2. Eindringen der Breccie in das anstehende Jura-Gestein in Form eines Ganges.

Abb. 3. Korrosionsstrukturen in der Kontaktzone von Breccie und Jura-Gestein. Weder äolische noch Verkarstungs-Prozesse kommen für die Korrosion in Frage, die wahrscheinlich mit einer Dekarbonisierung zusammenhängt.

Bei flüchtiger Betrachtung sieht das grünliche Gestein wie eine massive Knochenbreccie aus (Abb. 4). Die nähere Untersuchung zeigt, daß es sich bei den „Knochen“ um „Der Impaktit von Jaulín (Azuara, Spanien)“ weiterlesen

Neue Varietäten der suevitischen Basalbreccie aus dem Gebiet des multiplen Impaktes in Nordspanien

Diese ungewöhnliche polymikte Breccie, die einheitlich über 120 km Erstreckung immer an der Basis des unverstellten Jungtertiärs auftritt, ist einer der Schlüsselbefunde zu dem tertiärenmultiplen Impakt in Nordspanien. Zu dieser Breccie ist bereits eine Menge gesagt und geschrieben worden (Ernstson & Fiebag, 1992; Ernstson & Claudin 2002, Ernstson et al. 2003; Claudin & Ernstson 2003; https://www.impaktstrukturen.de/suevite/suevitazuara.html,
https://www.impaktstrukturen.de/spain/rubie/Basal.html),

weshalb wir uns hier darauf beschränken, einige neue Varietäten vorzustellen. Sie stehen etwa 2 km nordöstlich von Olalla in der Randzone zwischen der Azuara-Impaktstruktur und dem Rubielos de la Cérida-Impaktbecken an. Wir weisen auf die vorherrschend paläozoischen und triassischen Komponenten hin, auf das Fließgefüge, auf die Halos, die viele Komponenten aufweisen, auf die bemerkenswerte Kohäsion und das „Fitting“ zerbrochener Klasten, auf Breccien-in Breccien, und wir meinen, daß manche der Breccien einfach nur schön anzuschauen sind.

Wir wollen hier aber auch nicht versäumen zu erwähnen, daß Regionalgeologen der Universität Zaragoza und vom Zentrum für Astrobiologie, Madrid, (Ángel Luis Cortés, „Neue Varietäten der suevitischen Basalbreccie aus dem Gebiet des multiplen Impaktes in Nordspanien“ weiterlesen

Karbonat-Psilomelan-Schmelzgestein in der Azuara-Impaktstruktur (NE-Spanien)

 

Aufschluß in Muschelkalk-Dolomit, der von einem dunklen Gang eines Impaktschmelzgesteins durchschlagen wird. Bei Monforte de Moyuela.

 

Der schwarze Gang unter dem Mikroskop: helle Matrix aus Karbonatmineralen (Cc), schwarze Partikel und Gasblasen (gv). Breite der Aufnahme etwa 1 mm.

 

Der vollständige Artikel steht hier:

http://www.uni-wuerzburg.de/mineralogie/schuessler/Monforte-vein.pdf